Home
Class 12
MATHS
The values of x in [-2pi, 2pi], for whi...

The values of x in `[-2pi, 2pi]`, for which the graph of the function `y = sqrt((1+sinx)/(1-sinx))-secx and y=-sqrt((1-sinx)/(1+sinx))` coincide are

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sqrt((1+sinx)/(1-sinx))=secx+tanx

sqrt((1+sinx)/(1-sinx))=tan(pi/4+x/2)

Evaluate: int_0^(pi//4) secx. sqrt((1-sinx)/(1+sinx)) dx

Cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))}=

cot^(-1)((sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx)))=

Tan^(-1)[(sqrt(1+sinx)-sqrt(1-sinx))/(sqrt(1+sinx)+sqrt(1-sinx))]=

y = cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))),find dy/dx.

If (5pi)/2

If (5pi)/(2)ltxlt3pi , then the value of the expression (sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx)) is

If (5pi)/(2)ltxlt3pi , then the value of the expression (sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx)) is