Home
Class 12
MATHS
The limiting value of (cosx)^(1/(sinx))...

The limiting value of `(cosx)^(1/(sinx))` at `x=0` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(sinx+cosx)/(sinx-cosx) , then value of (dy)/(dx) at x=0 is:

The maximum value of f(x)=sinx(1+cosx) is

The maximum value of f(x)=sinx(1+cosx) is

If 0 lt x lt 5/4 and cosx+sinx=5/4 then the value of 16(cosx-sinx)^2 is

If 0 < x < 5/4 and cosx+sinx=5/4 then the value of 16(cosx-sinx)^2 is

If 0 lt x lt 5/4 and cosx+sinx=5/4 then the value of 16(cosx-sinx)^2 is

Find the value of tan^-1((sinx+cosx)/(cosx-sinx))

Determine the maximum value of |(cos x, sinx),(-sinx, cosx-1)| .

The value of the limit lim_(x to 0) ((x)/(sinx))^(6//x^(2)) is

The derivative of tan^(-1) ((sinx -cosx)/(sinx +cosx)) , with respect to (x)/(2) , where x in(0,(pi)/(2)) is: