Home
Class 11
MATHS
A function is defined parametrically as ...

A function is defined parametrically as follows :`x=t^5-5t^3-20 t+7y=4t^3-3t^2-18 t+3}, | t |<2`.Finf the the maximum and the mimimum of the funtion and mention the values of t where they are attained.

Promotional Banner

Similar Questions

Explore conceptually related problems

A function is defined parametrically as follows: x=t^(5)-5t^(3)-20t+7y=4t^(3)-3t^(2)-18t+3},|t|<2 Finf the the maximum and the mimimum of the funtion and mention the values of t where they are attained.

A function y =f(x) is represented parametrically as following x=phi(t)=t^(5)-20t+7 y=psi(t)=4t^(3)-3t^(2)-18t+3 where t in [-2,2] Find the intervals of monotonicity and also find the points of extreama.Also find the range of function.

A functiony =f(x) is represented parametrically as following x=phi(t)=t^(5)-20t+7 y=psi(t)=4t^(3)-3t^(2)-18t+3 where t in [-2,2] Find the intervals of monotonicity and also find the points of extreama.Also find the range of function.

If the function y=f(x) is represented as x=phi(t)=t^5-5t^3-20 t+7 , y=psi(t)=4t^3-3t^2-18 t+3(|t|<2), then find the maximum and minimum values of y=f(x)dot

If the function y=f(x) is represented as x=phi(t)=t^5-5t^3-20 t+7 , y=psi(t)=4t^3-3t^2-18 t+3(|t|<2), then find the maximum and minimum values of y=f(x)dot

If the function y=f(x) is represented as x=phi(t)=t^5-5t^3-20 t+7 , y=psi(t)=4t^3-3t^2-18 t+3(|t|<2), then find the maximum and minimum values of y=f(x)dot

If the function y=f(x) is represented as x=phi(t)=t^(5)-5t^(3)-20t+7y=psi(t)=4t^(3)-3t^(2)-18t+3(|t|<2) then find the maximum and minimum values of y=f(x)

A function is reprersented parametrically by the equations x=(1+t)/(t^3); y=3/(2t^2)+2/t then the value of |(dy)/(dx)-x((dy)/(dx))^3| is__________

A function is represented parametrically by the equations x=(1+t)/(t^3),y=3/(2t^2)+2/t then (dy)/(dx) -x ((dy)/(dx))^3 has the absolute value of equal to