Home
Class 12
MATHS
Let m be a positive integer and Deltar=|...

Let m be a positive integer and `Deltar`=`|[2r-1,.^mC_r,1],[m^2-1,2^m,m+1],[sin^2(m^2),sin^2m,sin(m^2)]|`. Then the value of `sum_(r=0)^m Deltar`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let m be a positive integer and Delta r=det[[m^(2)-1,*^(m)C_(r),1m^(2)-1,2^(m),m+1sin^(2)(m^(2)),sin^(2)m,sin(m^(2))]] of sum_(r=0)^(m)Delta r

If m is a positive integer and D_r=|(2r-1,\ ^m C_r,1),(m^2-1, 2^m ,m+1),(sin^2(m^2),sin^2(m),sin^2(m+1))| . Prove that sum_(r=0)^m D_r=0 .

If m is a positive integer and D_r=|(2r-1,\ ^m C_r,1),(m^2-1, 2^m ,m+1),(sin^2(m^2),sin^2(m),sin^2(m+1))| . Prove that sum_(r=0)^m D_r=0 .

Let m be a positive integer and Delta_(r)=|(2r-1,""^(m)C_(r),1),(m^(2)-1,2^(m),m+1),(sin^(2)(m^(2)),sin^(2)(m),sin^(2)(m+1))|(0lerlem) Then the value of sum_(r=0)^(m)Delta_(r ) is given by a)0 b) m^(2)-1 c) 2^(m) d) 2^(m)sin^(2)(2^(m))

If m is a positive integer and D_r=|2r-1\ ^m C_r1m^2-1 2^m m+1s in^2(m^2)s in^2(m)s in^2(m+1)| . Prove that sum_(r=0)^m D_r=0 .

Let t be a positive integer and |((2t-1),m^2-1,cos^2(m)),(mC_t,2^m,cos^2(m)),(1,m+1,cos(m^2))| then the value of sum_(t=0)^m Delta_t is equal to

If Delta_r= |[2r-1, mC_r,1],[m^2-1,2^m,m+1],[m^2+m+1,2^m+1,m+2]| , then sum_(r=0)^m Delta_r=

If D_(r)=|{:(2r-1,""^(m)C_(r),1),(m^(2)-1,2^(m),m+1),(sin^(2)(m^(2)),sin^(2)(m),sin^(2)(m+1)):}| then find sum_(r=0)^(m)D_(r) .