Home
Class 11
MATHS
Let f be a function defined from R rarr ...

Let f be a function defined from `R rarr R` If `[f(xy)]^2=x(f(y))^2` for all positive numbers x and y and f(2)=6 then find f(50)

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a function defined from R^(+)rarrR^(+). If (f(xy))^(2)=x(f(y))^(2) for all positive numbers x and y, If f(2)=6, find f(50) =?

Let f be a function defined from R^(+)rarrR^(+). If (f(xy))^(2)=x(f(y))^(2) for all positive numbers x and y, If f(2)=6, find f(50) =?

Let f be a function defined from F^(+)rarrR^(+). If (f(xy))^(2)=x(f(y))^(2) for all positive numbers x and y, If f(2)=6, find f(50) =?

Let f be a function defined from F^(+)rarrR^(+). If (f(xy))^(2)=x(f(y))^(2) for all positive numbers x and y, If f(2)=6, find f(50) =?

Let f be a function such that f(xy)=(f(x))/(y) for all positive real numbers x,y .If f(20)=15, then f(50)=

Let f be a function such that f(xy)=(f(x))/y for all positive real numbers x, y. If f(20) = 15, then f(50) =

Let f:R rarr R be a function defined as f(x)=(x^(2)-6)/(x^(2)+2) , then f is

Let f:R rarr R be a function defined as f(x)=(x^(2)-6)/(x^(2)+2) , then f is