Home
Class 12
MATHS
The probability that sin^(-1)(sin x)+cos...

The probability that `sin^(-1)(sin x)+cos^(-1)(cos y)` is an integer `x, y in (1,2,3,4)`,is

Promotional Banner

Similar Questions

Explore conceptually related problems

The probability that sin^(-1)(sinx)+cos^(-1)(cosy) is an integer x,y in {1,2,3,4} is

The probability that sin^(-1)(sinx)+cos^(-1)(cosy) is an integer x,y in {1,2,3,4} is

The probability that sin^(-1)(sinx)+cos^(-1)(cosy) is an integer x,y in {1,2,3,4} is

The probability that sin^(-1)(sinx)+cos^(-1)(cosy) is an integer x,y in {1,2,3,4} is

Find the area bounded by the curves y=(sin^(-1)(sin x)+cos^(-1)(cos x)) and y=(sin^(-1)(sin x)+cos^(-1)(cos x))^(2) for 0<=x<=2 pi

If sin^(-1) x + cos ^(-1) y = (2pi)/5 , then cos^(-1) x + sin ^(-1) y is

tan (sin ^(-1)x+sin ^(-1) y) +tan (cos^(-1)x+cos ^(-1)y)

If sin^(-1)x +sin^(-1)y =pi then cos^(-1)x +cos^(-1)y is :

If sin x cos y=(1)/(4) and 3tan x=4 then sin(x-y)=