Home
Class 11
MATHS
(lim)(x->pi/2)(tan2x)/(x-pi/2)...

`(lim)_(x->pi/2)(tan2x)/(x-pi/2)`

Text Solution

AI Generated Solution

To solve the limit \(\lim_{x \to \frac{\pi}{2}} \frac{\tan 2x}{x - \frac{\pi}{2}}\), we can follow these steps: ### Step 1: Substitute \(y = x - \frac{\pi}{2}\) Let’s define a new variable \(y\) such that: \[ y = x - \frac{\pi}{2} \] Then, as \(x\) approaches \(\frac{\pi}{2}\), \(y\) approaches \(0\). This means we can rewrite \(x\) as: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT|Exercise SOLVED EXAMPLES|25 Videos
  • LIMITS AND DERIVATIVES

    NCERT|Exercise MISCELLANEOUS EXERCISE|30 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT|Exercise EXERCISE 12.1|4 Videos
  • LINEAR INEQUALITIES

    NCERT|Exercise EXERCISE 6.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_( x to (pi/(2)) (tan2x)/(x-(pi)/(2))

For alpha>0, let lim_(x rarr pi)(tan2x)/(x-pi)=lim_(x rarr0)((1-cos2 alpha x)^(2))/(x^(4)) then alpha is equal to

(lim)_(x->oo)((2tan^(-1)x)/pi)^x

Which of the following are true? lim_(x->pi/2+) tan x=oo , lim_(x->pi/2-) tanx=oo , lim_(x->pi/2) tanx=oo , lim_(x->pi/2) tanx=does not exist

(lim)_(x->1)(1-x)tan((pix)/2)\ a. pi/2 b. pi c. 2/pi d. 0

lim_ (x rarr (pi) / (2)) (tan2x) / (x- (pi) / (2))

Evaluate: (lim)_(x rarr(pi)/(2))((pi)/(2)-x)tan x

Lim_(x rarr pi/2)(cos x)/((pi)/(2)-x)