Home
Class 12
MATHS
The function f(x)=max { |x|^3 , 1 ) , x>...

The function `f(x)=max { |x|^3 , 1 ) , x>= 0` and `f(x)=min { |x|^3 , 1 ) , x< 0`is non differentiable at `n` points then `n=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Plot the function f(x)= max{x, x^2, x^3}

The function f(x)="max" {(1-x), (1+x), 2} is equivalent to

Consider the function f(x) = max {1,|x-1| , min {4,13x, -11}} AA x in R Then find the value of f(3)

The function f(x)=(3sin x-sin3x)/(x^(3)) for x!=0;f(0)=1 at x=0 is

The function f(x)=(3sin x-sin 3x)/(x^(3))" for "x ne 0, f(0) =1 at x=0 is

Consider the function: f(x)=max.{1,|x-1|, min {4,|3x-1|}}AA x in R. Then find the value of f(3).