Home
Class 11
PHYSICS
A tangential force of 2100N is applied o...

A tangential force of `2100N` is applied on a surface area `3xx10^(-6) m^(2)` which is `0.1m` form fixed surface. The force produces a shift of `7m` of upper surface with respect to bottom. Calcualte the modulus of rigidity fo the material.

Promotional Banner

Similar Questions

Explore conceptually related problems

A tangential force of 2100 N is applied on a surface of area 3xx10^(-6)m^(2) which is 0.1 m from a fixed face. The force produces a shift of 7 mm of upper surface with respect to bottom. Calculate the modulus of rigidity of the material.

A tangential force of 2100 N is applied on the surface area 3 xx 10^-6 m^2 which is 0.1m from a fixed surface. The force produces a lateral shift of 7mm of the upper surface with respect to the bottom. Calculate the modulus of rigidity of the material

A tangential force 2100 N is applied on a surface area 3xx10^(-6)m^(2) which is 0.1 m from a fixed face. If the force produces a shift of 7xx10^(-3) m of the upper surface with respect to the bottom. Then the modulus of rigidity of the material will be,

A tangential force of 1000N is applied on upper surface of area 2mm^(2) which is 0.05 m from its fixed face. Find the shift of the upper surface with respect to its fixed face if its modulus of rigidity is 0.30xx10^(11)Nm^(-2) .

A tangential force of 0.25 N is applied to a 5 cm cube to displace its upper surface with respect to the bottom surface. The shearing stress is

Calculate the modulus of rigidity of a metal, if a metal cube of side 40cm is subjected to a shearing force of 2000N. The upper surface is displaced through 0.5cm with respect to the bottom. Calculate the modulus of rigidity of the metal.

Calculate the modulus of rigidity of a metal, if a metal cube of side 40 cmsissubjected to a shearing force of 2000 N. The upper surface is displaced through 0.5 cms with respect to the bottom. Calculate the Modulus of rigidity of the metal.

The Young's modulus of a material is 10^(11)N//m^(2) and its Poisson's ratio is 0.2 . The modulus of rigidity of the material is

A cube of soft rubber of face area 0.02 m^(2) whose lower face is fixed is sheared through an angle 2^(@) by a force of 10^(4) N acting tangential to the upper face. Calculate the rigidity modulus of the material.