Home
Class 12
MATHS
If z^2+z+1=0, then sum(r=1)^6(z^r+z^(-r)...

If `z^2+z+1=0`, then `sum_(r=1)^6(z^r+z^(-r))^2` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If z^(2)+z+1=0 then sum_(r=1)^(6)(z^(r)+(1)/(z^(r)))^(2)=

If z_(r)(r=0,1,2,…………,6) be the roots of the equation (z+1)^(7)+z^7=0 , then sum_(r=0)^(6)"Re"(z_(r))=

If z_(r)(r=0,1,2,…………,6) be the roots of the equation (z+1)^(7)+z^7=0 , then sum_(r=0)^(6)"Re"(z_(r))=

If z_1,z_2,z_3,z_4 be the vertices of a parallelogram taken in anticlockwise direction and |z_1-z_2|=|z_1-z_4|, then sum_(r=1)^4(-1)^r z_r=0 (b) z_1+z_2-z_3-z_4=0 a r g(z_4-z_2)/(z_3-z_1)=pi/2 (d) None of these

If z_1,z_2,z_3,z_4 be the vertices of a parallelogram taken in anticlockwise direction and |z_1-z_2|=|z_1-z_4|, then sum_(r=1)^4(-1)^r z_r=0 (b) z_1+z_2-z_3-z_4=0 a r g(z_4-z_2)/(z_3-z_1)=pi/2 (d) None of these

Let |Z_(r) - r| le r , for all r = 1,2,3….,n . Then |sum_(r=1)^(n)z_(r)| is less than

Let |Z_(r) - r| le r , for all r = 1,2,3….,n . Then |sum_(r=1)^(n)z_(r)| is less than

Let |Z_(r) - r| le r, Aar = 1,2,3….,n . Then |sum_(r=1)^(n)z_(r)| is less than

Let |Z_(r) - r| le r, Aar = 1,2,3….,n . Then |sum_(r=1)^(n)z_(r)| is less than

Let |Z_(r) - r| le r, Aar = 1,2,3….,n . Then |sum_(r=1)^(n)z_(r)| is less than