Home
Class 12
MATHS
If the vdectors ai+j+k and i+j+ck, a!=b!...

If the vdectors `ai+j+k` and `i+j+ck`, `a!=b!=c!=1`, then the value of `1/(1-a)+1/(1-b)+1/(1-c)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If the vdectors ai+j+k and i+j+cka!=b!=c!=1, then the value of (1)/(1-a)+(1)/(1-b)+(1)/(1-c) is equal to

If the vectors a hat(i) + hat(j) + hat(k), hat(i) + b hat(j) + hat(k) and hat(i) + hat(j) + c hat(k) (a,b ne 1) are coplanar then the value of (1)/(1-a) + (1)/(1-b) + (1)/(1-c) is equal to

If the vectors a hat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k) and hat(i)+hat(j)+chat(k)(a, b, c, !=1) are coplanar, then the value of (1)/(1-a)+(1)/(1-b)+(1)/(1-c) is equal to

If the vectors ahat i+hat j+hat k , hat i+bhat j+hat k and hat i+hat j+chat k(a!=b!=c!=1) are coplanar,then the value of (1)/(1-a)+(1)/(1-b)+(1)/(1-c) .

If the vectors vec r_(1) = ai+j+k, vec r_(2) = i + bj + k, vec r_(3) = i + j + ck ( a ne 1, b ne 1, c ne 1) are coplanar then the value of 1/(1-a) + 1/(1-b) + 1/(1-c) =

If the vectors ai + j + k , i + bj + k and i + j + ck, where a, b, c ne1 , are coplanar, then : 1/(1-a)+1/(1-b)+1/(1-c)=…