Home
Class 12
MATHS
Using properties of determinants. Prove ...

Using properties of determinants. Prove that`|sinalphacosalphacos(alpha+delta)sinbetacosbetacos(beta+delta)singammacosgammacos(gamma+delta)|=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Using properties of determinants. Prove that |(sinalpha,cosalpha,cos(alpha+delta)),(sinbeta,cosbeta,cos(beta+delta)),(singamma,cosgamma,cos(gamma+delta))|=0

Using properties of determinants, prove that: |[sinalpha,cosalpha,cos(alpha+delta)],[sinbeta,cosbeta,cos(beta+delta)],[singamma,cosgamma,cos(gamma+delta)]| = 0

Using properties of determinants, prove that |[sinalpha,cosalpha,cos(alpha+delta)],[sinbeta,cosbeta,cos(beta+delta)],[singamma,cosgamma,cos(gamma+delta)]| = 0

Prove that |(sin alpha,cos alpha,sin(alpha+delta)),(sin beta,cos beta,sin(beta+delta)),(sin gamma,cos gamma,sin(gamma+delta))|=0

Prove that |(sin alpha,cos alpha,sin(alpha+delta)),(sin beta,cos beta,sin(beta+delta)),(sin gamma,cos gamma,sin(gamma+delta))|=0

sin alpha, cos alpha, cos (alpha + delta) sin beta, cos beta, cos (beta + delta) sin gamma, cos gamma, cos (gamma + delta)] | = 0

Without expanding,show that the value of each of the determinants is zero: det[[sin alpha,cos alpha,cos(alpha+delta)sin beta,cos beta,cos(beta+delta)sin gamma,cos gamma,cos(gamma+delta)]]

Using properties of determinants in Exercise 11 to 15 prove that |{:(sinalpha,cosalpha,cos(alpha+delta)),(sinbeta,cosbeta,cos(beta+delta)),(singamma,cosgamma,cos(gamma+delta)):}|=0

{:|( sin alpha , cos alpha ,cos (alpha +delta) ),( sinbeta, cos beta,cos (beta+delta )),(sin gamma , cos gamma , cos ( gamma +delta ))|:}=0

Without expanding evaluate the determinant |sin alpha cos alpha sin(alpha+delta)sin beta cos beta sin(beta+delta)sin gamma cos gamma sin(gamma+delta)|