Home
Class 11
MATHS
if phi=tan^-1((xsqrt3)/(2k-x)) and theta...

if `phi=tan^-1((xsqrt3)/(2k-x))` and `theta=tan^-1((2x-k)/(ksqrt3))` then one of the value of `phi-theta` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If phi = tan^-1 (xsqrt3)/(2k-x) and theta (2x-k)/(ksqrt3) , then show that one value of (phi - theta) is 30^@

If phi="tan"^(-1)(xsqrt(3))/(2k-x) and theta="tan"^(-1)(2x-k)/(k sqrt(3)) , then show that one value of (phi-theta) is 30^(@) .

If phi= tan^(-1)(( xsqrt3)/(2k-x)) and psi = tan^(-1) ((2x-k)/(k*sqrt3)) then one value of phi - psi is

If A=Tan^(-1)((xsqrt(3))/(2k-x)) and B=Tan^(-1)((2x-k)/(ksqrt(3))) then A-B=

If A="tan"^(-1)((xsqrt3)/(2K-x)) and B="tan"^(-1)((2x-K)/(Ksqrt3)) , then the value of A-B is

If A= tan^-1((xsqrt3)/(2k-x)) and B= tan^-1((2x-k)/(ksqrt3)) then find the value of A-B (A) 0^@ (B) 30^@ (C) 60^@ (D) 45^@

If tan theta=(1)/(2) and tan phi=(1)/(3), then the value of theta+phi is

If 2sec2theta = tan phi + cot phi , then one of the values of theta + phi is: