Home
Class 11
MATHS
Let xn = 3^(a+(n-1)b) (n in N and a,b ar...

Let `x_n = 3^(a+(n-1)b)` (n `in` N and a,b are non negative integers) be an increasing geometric sequence satisfying `sum_(x=1)^8 log_3 (x_n) = 308 and 56 <= log_3 (sum_(x=1)^8 x_n) <= 57`, then `log_3 (x_5)` is greater than or equal to -

Promotional Banner

Similar Questions

Explore conceptually related problems

If n=1999! then sum_(x=1)^(1999)log_(n)x=

If n=1999! then sum_(x=1)^(1999) log_n x=

Let x=(sum_(n=1)^(44) cos n^(@))/(sum_(n=1)^(44) sin n^(@)) , find the greatest integer that does not exceed.

Let x=(sum_(n=1)^(44) cos n^(@))/(sum_(n=1)^(44) sin n^(@)) , find the greatest integer that does not exceed.

Let n and r be non negative integers such that 1<=r<=n* Then,^(n)C_(r)=(n)/(r)*^(n-1)C_(r-1)

Let f(x)=x^n , n being a non negative integer. The value of n for which the equality f'(a+b)=f'(a)+f'(b) is valid for all a.bgt0 is

Let f(x)=x^n , n being a non negative integer. The value of n for which the equality f'(a+b)=f'(a)+f'(b) is valid for all a.bgt0 is

Let f(x)=x^(n)n being a non negative integer. The value of n for which the equality f'(a+b)=f'(a)+f'(b) is valid for all a*b>0 is