Home
Class 12
MATHS
Find the number of polynomials of the fo...

Find the number of polynomials of the form `x^3+a x^2+b x+c` that are divisible by `x^2+1,w h e r ea , b ,c in {1,2,3,9,10}dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the number of polynomials of the form x^(3)+ax^(2)+bx+c that are divisible by x^(2)+1, where a,b,c in{1,2,3,...9,10}

The number of polynomials of the form x^(3)+ax^(2)+bx+c that are divisible by x^(2)+1 , where a, b,c in{1,2,3,4,5,6,7,8,9,10} , is

The number of polynomials of the form x^(3)+ax^(2)+bx+c that are divisible by x^(2)+1 , where a, b,c in{1,2,3,4,5,6,7,8,9,10} , is

The number of polynomials of the form x^(3)+ax^(2)+bx+c that are divisible by x^(2)+1 , where a, b,cin{1,2,3,4,5,6,7,8,9,10} , is

The number of polynomials of the form x^(3)+ax^(2)+bx+c that are divisible by x^(2)+1 , where a, b,cin{1,2,3,4,5,6,7,8,9,10} , is

The number of polynomials of the form x^(3)+ax^(2)+bx+c that are divisible by x^(2)+1 , where a, b,cin{1,2,3,4,5,6,7,8,9,10} , is

The number of polynomials of the form x^3 + ax^2 + bx + c which are divisible by x^2 + 1 and where a, b , c belong to {1,2,....,10}

If a x^3+b x^2+c x+d is divisible by a x^2+c ,t h e na ,b ,c ,d are in