Home
Class 11
MATHS
" Number of solution(s) of the equation ...

" Number of solution(s) of the equation "cos^(-1)sqrt(x)-sin^(-1)sqrt(x-1)+cos^(-1)sqrt(1-x)-sin^(-1)(1)/(sqrt(x))=(pi)/(2)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

Number ofsolution(s) ofthe equation cos^(-1)sqrt(x)-sin^(-1)sqrt(x-1)+cos^(-1)sqrt(1-x)-sin^(-1)((1)/(sqrt(x)))=(pi)/(2)

sin^(-1)sqrt(x)+cos^(-1)sqrt(1-x)=

sin^(-1)sqrt(x)+cos^(-1)sqrt(1-x)=

cos^(-1)sqrt(1-x)+sin^(-1)sqrt(1-x)=

The number of real solution(s) of the equation sin^(-1)sqrt(x^(2)-x+1)+cos^(-1)sqrt(x^(2)-x)=pi is/are

The solution set of the equation sin^(-1)sqrt(1-x^(2))+cos^(-1)x=cot^(-1)""sqrt(1-x^(2))/x-sin^(-1)x is

The number of solutions for the equation sin^(-1) sqrt((x^(2)-x+1))+cos^(-1)sqrt((x^(2)-x))=pi is :

The number of solutions for the equation sin^(-1) sqrt((x^(2)-x+1))+cos^(-1)sqrt((x^(2)-x))=pi is :

(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x)),x in[0,1]

Evaluate: int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x))dx