Home
Class 11
MATHS
[" Prove that "],[" (i) "tan^(-1)((1-x^(...

[" Prove that "],[" (i) "tan^(-1)((1-x^(2))/(2x))+cot^(-1)((1-x^(2))/(2x))=(pi)/(2)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: tan^(-1)((1-x^(2))/(2x))+cot^(-1)((1-x^(2))/(2x))=(pi)/(2)

Prove that: tan^(-1)((1-x^2)/(2x))+cot^(-1)((1-x^2)/(2x))=pi/2

Prove that: tan^(-1)((1-x^2)/(2x))+cot^(-1)((1-x^2)/(2x))=pi/2

tan^(-1)((2x)/(1-x^2))+cot^(-1)((1-x^2)/(2x))=pi/3

tan^(-1)((2x)/(x^(2)-1))+cot^(-1)((x^(2)-1)/(2x))=-(4 pi)/(3)

Solve : tan^(-1)((2x)/(1-x^(2)))+cot^(-1)((1-x^(2))/(2x))=(pi)/(3),xgt0

If :"Tan"^(-1)(2x)/(1-x^(2))+Cot^(-1)((1-x^(2))/(2x))=(pi)/3,xgt0 then

If tan^(-1)((x-1)/(x-2))+cot^(-1)((x+2)/(x+1))=(pi)/(4) , find x.

Solve the following equations tan^(-1)""(2x)/(1-x^(2))+cot^(-1)""(1-x^(2))/(2x)=(pi)/(3)