Home
Class 12
MATHS
If A=([a(i j)])(3x3') such that a(i j)={...

If `A=([a_(i j)])_(3x3')` such that `a_(i j)={2,,i=j0,i!=j ,t h e n` `|A|=8` (b) `|A d jdotA|=32` `C+log_(1/2)(|A|^(|A d jdotA|))=-191` `|A d jdot(A d jdotA)|=12^(12)`

Promotional Banner

Similar Questions

Explore conceptually related problems

if A=[a_(ij)]_(3xx3) such that a_(ij)=2 , i=j and a_(ij)=0 , i!=j then 1+log_(1/2) (|A|^(|adjA|))

If A=([a_(i j)])_(3xx3), such that a_(i j)={2,i=j and 0,i!=j ,t h e n1+(log)_(1//2)(|A|^(|a d jA|)) is equal to a. -191 b. -23 c. 0 d. does not exists

If A=([a_(i j)])_(3xx3), such that a_(i j)={2,i=j and 0,i!=j ,t h e n1+(log)_(1//2)(|A|^(|a d jA|)) is equal to a.-191 b.-23 c.0 d. does not exists

If A=[a_(i j)] is a 2xx2 matrix such that a_(i j)=i+2j , write A .

If matrix A=([a_(i j)])_(2xx2) , where a_(i j)={1,\ if\ i!=j0,\ if\ i=j , then A^2 is equal to I (b) A (c) O (d) I

if A=[a_(ij)]_(2*2) where a_(ij)={i+j , i!=j and i^2-2j ,i=j} then A^-1 is equal to

If matrix A=[a_(ij)]_(2x2), where a_(ij)={{:(1"," , i ne j),(0",", i=j):} then A^(3) is equal to

if A=[a_(ij)]_(2*2) where a_(ij)={i+j,i!=j and a_(ij)=i^(2)-2j,i=j then A^(-1) is equal to

If matrix A = [a_(i j)]_(2 xx 2) , where a_(i j) = {("1 if",i ne j),("0 if",i = j):} then A^(2) is equal to

If matrix A=([a_(ij)])_(2xx2), where a_(ij)={1,quad if quad i!=j0,quad if i+j, then A^(2) is equal to I( b) A(c)O(d)I