Home
Class 9
MATHS
lim(x rarr oo)((x+sin x)/(x)) equals to...

`lim_(x rarr oo)((x+sin x)/(x))` equals to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr oo)x sin(1/x)=

lim_(x rarr oo)a^(x)

lim_(x rarr oo)((cos x)/x)

lim_(x rarr oo) sin x /x =1

lim_(x rarr oo)(2+sin x)/(x^(2)+3)

(lim)_(x rarr oo)(sin x)/(x) equals a.1b*0c.oo d . does not exist

lim_(x rarr 0)"x sin" (1)/(x) is equal to :

lim_(x rarr oo)(x+sin x)/(x-sin x) is equal to