Home
Class 12
MATHS
Let f(x)=sin(x/(n!))+cos((2x)/((n+1)!))....

Let `f(x)=sin(x/(n!))+cos((2x)/((n+1)!))`. Find the period of `f(x)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the period of f(x)=sin((pix)/(n !))-cos((pix)/((n+1)!))

Find the period of f(x)=sin((pix)/(n !))-cos((pix)/((n+1)!))

Find the period of f(x)=sin((pix)/(n !))-cos((pix)/((n+1)!))

Let f(x)=sin((x)/(3))+cos((3x)/(10)) for all real x.Find the least natural number n such that f(n pi+x)=f(x) for all real x.

Find the period of f(x)=sin(pi x)/(n!)-cos(pi x)/((n+1)!)

The period of f(x)=sin((pix)/(n-1))+ cos ((pix)/(n)), n in Z, n gt 2 , is

The period of f(x)=sin((pix)/(n-1))+ cos ((pix)/(n)), n in Z, n gt 2 , is

The period of f(x) = sin""(pi x)/(n!)-cos""(pi x)/((n+1)!) is

Let f(x) = sin(x/3) + cos((3x)/10) for all real x. Find the least natural number n such that f(npi + x) = f(x) for all real x.