Home
Class 12
MATHS
If solution of the equation |x/(x-1)|+|x...

If solution of the equation `|x/(x-1)|+|x|=x^2/|x-1|` is `(a,oo) uu {b}` then `3a+b` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the equation |x-1|+2|x+1|+|x-2|<=8 is x in[a,b], then the value of |b-a|+(1)/(|b+a|) is :

Complete solution set of the inequation (x^2-1)(x^2-6x+8)geq0 is (a) x in [-1,1]uu[2,4] (b) x in (-oo,-1)uu[1,2]uu[4,oo] (c) x in [-1,2]uu[4,oo] (d) none of these

Solution set of the inequation, (x^2-5x+6)/(x^2+x+1)<0 is x in (-oo,2) (b) x in (2,3) x in (-oo,2)uu(3,oo) (d) x in (3,oo)

If the solution of the equation |(x^4-9) -(x^2 + 3)| = |x^4 - 9| - |x^2 + 3| is (-oo,p]uu[q,oo) then

If the solution of the equation (x^(4)-9)-(x^(2)+3)|=[x^(4)-9|-|x^(2)+3| is (-oo,p]uu[q,oo) then

If solution set of the inequation (log_(3))(|x^(2)-4x|+3)/(x^(2)+|x-5|)>=0, is (-oo,a]uu[b,c] tyhen find the value of (3a+2b+c)

If the complete set of value of x satisfying |x-1|+|x-2|+|x-3|>=6 is (-oo,a]uu[b,oo) , then a+b=

Solution set of the inequation (x^2+4x+4)/(2x^2-x-1)>0, is x in (-oo,-2)uu(-2,1) x in (-oo,-2)uu(-2,-1/2)uu(1,oo) x in (-oo,-2)uu(-1/2,1)uu(1,oo) x in (-oo,1)

The solution set of the inequality max {1-x^2,|x-1|}<1 is (-oo,0)uu(1,oo) (b) (-oo,0)uu(2,oo) (0,2) (d) (0,2)

The solution set of the inequality max {1-x^(2),|x-1|}<1 is (-oo,0)uu(1,oo) (b) (-oo,0)uu(2,oo)(0,2)(d)(0,2)