Home
Class 12
MATHS
[" The equation "e^(sin x)-e^(-sin x)-4=...

[" The equation "e^(sin x)-e^(-sin x)-4=0" has "740000],[e^(sin x)-e^(-sin x)-4=0(1)/(8)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve e^(sin x)-e^(-sin x) - 4 = 0 .

Solve e^(sin x)-e^(-sin x) - 4 = 0 .

Solve e^(sin x)-e^(-sin x) - 4 = 0 .

The solution of the equation e^(sin x)-e^(-sin x)-4=0

no.of solutions of the equation e^(sin x)-e^(-sin x)-4=0

Show that the equation e^(sinx)-e^(-sin x)-4=0 has no real solution.

e^(-2x)sin 4 x

Number of solutions to the equation |2e^(sin x) - 3 - e^(2 sin x)|= | e^(sin x) - e^(2 sinx) - 1| i n [0, 2 pi] is

lim_(x rarr0)(e^(sin x)-sin x-1)/(x)