Home
Class 12
MATHS
Let bara be a unit vector bar b=2bar i+...

Let `bara` be a unit vector `bar b=2bar i+bar j-bar k and bar c=bar i+3bar k` then maximum value of `[bar a bar b bar c]` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let bar(a) be a unit vector bar(b)=2bar(i)+bar(j)-bar(k) and bar(c)=bar(i)+3bar(k) then maximum value of [[bar(a),bar(b),bar(c)]] is

If bar a = 2 bar I + bar j - bar k, bar b = - bari + 2 bar j - 4 bar k and bar c = bar I + bar j + bar k , then find ( bar a xx bar b) cdot (bar b xx bar c) .

Let bar a = 2bar i + bar k,bar b=bar i+bar j+bar k and bar c=4 bar i-3bar j+7 bar k three vectors. The vector which satisfies bar r xx bar b=bar c xx bar b and bar r.bar a=0 is

If bar a=hat i +hat j+ hat k, bar b=hat i-hat j +hat k, bar c=hat i +2hat j-hat k then the value of |[bar a.bar a, bar a.bar b, bar a.bar c],[bar b.bar a,bar b.bar b, bar b.bar c],[bar c.bar a,bar c.bar b,bar c.barc]|

Let bar a = 2 bari + 4 bar j - 5 bark, bar b= bar i + bar j + bar k and bar c = bar j + 2 bar k . Find the unit vector in the opposite direction of bar a + bar b + bar c .

bar (a) = 2bar (i) + 3bar (j) -bar (k), bar (b) = bar (i) + 2bar (j) -4bar (k), bar (c) = bar (i) + bar (j) + bar (k), bar (d) = bar (i) -bar (j) -bar (k) then

If bar(a) = 2bar(i) - bar(j) + bar(k), and bar(b) = bar(i) - 3bar(j) - 5bar(k) then find |bar(a) xx bar(b)| .

Prove that vectors bar(a) = 2bar(i) -bar(j) + bar(k), bar(b) = bar(i) -bar(3j)-5bar(k) and bar(c ) = 3bar(i) - 4bar(j) -4bar(k) are coplanar.

If the vector bar(a)=2bar(i)+3bar(j)+6bar(k) and bar(b) are collinear and abs(bar(b))=21" then "bar(b)=