Home
Class 12
MATHS
The shortest distance between the lines ...

The shortest distance between the lines `bar r=3bar i+5bar j+7bar k+lambda(bar i+2bar j+bar k) and bar r=-bar i-bar j+bar k+mu(7bar i-6bar j+bar k)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The shortest distance the two lines bar(r)=2bar(i)-bar(j)-bar(k)+lambda(2bar(i)+bar(j)+2bar(k)) and bar(r)=(bar(i)+2bar(j)+bar(k))+mu(bar(i)-bar(j)+bar(k)) is

The distance between the line bar(r)=2bar(i)-2bar(j)+3bar(k)+lambda((bar(i)-bar(j)+4bar(k)) and the plane bar(r).(bar(i)+5bar(j)+bar(k))=5 is

Find the shortest distance between the skew lines . bar(r)=(6bar(i)+2bar(j)+2bar(k))+t(bar(i)-2bar(j)+2bar(k))andbar(r)=(-4bar(i)-bar(k))+s(3bar(i)-2bar(j)-2bar(k))

The lines bar(r)=bar(i)+bar(j)-bar(k)+s(3bar(i)-bar(j)) and bar(r)=4bar(i)-bar(k)+t(2bar(i)+3bar(k))

Find the distance between the planes bar(r) * ( 2 bar(i) - bar(j) + 3 bar(k)) = 4 and bar(r) * ( 6 bar(i) - 3 bar(j) + 9 bar(k)) + 13 = 0

bar (a) = 2bar (i) + 3bar (j) -bar (k), bar (b) = bar (i) + 2bar (j) -4bar (k), bar (c) = bar (i) + bar (j) + bar (k), bar (d) = bar (i) -bar (j) -bar (k) then

The distance between a point P whose position vector is 5bar(i)+bar(j)+3bar(k) and the line bar(r)=(3bar(i)+7bar(j)+bar(k))+t(bar(j)+bar(k))

If bar(a) = 2bar(i) - bar(j) + bar(k), and bar(b) = bar(i) - 3bar(j) - 5bar(k) then find |bar(a) xx bar(b)| .