Home
Class 11
MATHS
Find (lim)(x->5)f(x), where f(x)=|x|-5...

Find `(lim)_(x->5)f(x)`, where `f(x)=|x|-5`

Text Solution

AI Generated Solution

To find the limit \( \lim_{x \to 5} f(x) \) where \( f(x) = |x| - 5 \), we can follow these steps: ### Step 1: Understand the function The function given is \( f(x) = |x| - 5 \). The absolute value function \( |x| \) behaves differently based on the value of \( x \): - If \( x \geq 0 \), then \( |x| = x \). - If \( x < 0 \), then \( |x| = -x \). ### Step 2: Determine the relevant case for \( x \to 5 \) ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT|Exercise SOLVED EXAMPLES|25 Videos
  • LIMITS AND DERIVATIVES

    NCERT|Exercise MISCELLANEOUS EXERCISE|30 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT|Exercise EXERCISE 12.1|4 Videos
  • LINEAR INEQUALITIES

    NCERT|Exercise EXERCISE 6.2|10 Videos

Similar Questions

Explore conceptually related problems

Find lim_(xrarr5) f(x) , where f(x)=|x|-5 .

Find lim_(x to 0)f(x) , where f(x)=abs(x)-5.

Find (lim)_(x rarr1)f(x), where f(x)=[x^(2)-1,x 1

Find (lim)_(x rarr0)f(x), where f(x)=[[(x)/(|x|),x!=00,x=0]]

Find (lim)_(x rarr3)f(x), where f(x)={4,quad if quad x>3x+1,quad if x<

Find lim_(x to 1) f(x) , where f(x) = {{:(x + 1, x != 1),(0, x = 1):}}

Find lim_(x to 0) f(x) , where f(x)={{:( x/abs "x " " ,", x ne 0), ( 0",", x =0) :}

Evaluate (lim)_(x rarr0)f(x), where f(x)={(|x|)/(x),x!=00,x=0

Find lim_(xrarr1) f(x) where f(x)= {[(x^2-1)/(x-1), x ne 1],[1, x=1]:}

Find lim_(x to 1) f(x) , where f(x)={{:(x^(2)-1,xle1),(-x^(2)-1,xgt1):}