Home
Class 12
MATHS
Let c1=(1,0,0),c2 = (1,1,0),c3 = (1,1,1...

Let `c_1=(1,0,0),c_2 = (1,1,0),c_3 = (1,1,1)` , then the reciprocal of `c_1=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A=[(5,0),(-1,0)] and B=[(0,1),(-1,0)] If 4A+5B-C=0 then C is

Let A=[(5,0),(-1,0)] and B=[(0,1),(-1,0)] If 4A+5B-C=0 then C is

Let A(1, 2, 3), B(0, 0, 1), C(-1, 1, 1) are the vertices of a DeltaABC .The equation of median through C to side AB is

Let A(1, 2, 3), B(0, 0, 1), C(-1, 1, 1) are the vertices of a DeltaABC .The equation of median through C to side AB is

Taking A = [(1,2),(-3,0)], B = [(0,1), (2,3)] and C = [(3,1),(0,2)] , verify that A + (B+C) = (A+B ) +C

Let (1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r) and , (C_(1))/(C_(0)) + 2 (C_(2))/(C_(1)) + (C_(3))/(C_(2)) +…+ n (C_(n))/(C_(n-1)) = (1)/(k) n(n+1) , then the value of k, is

Let (1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r) and , (C_(1))/(C_(0)) + 2 (C_(2))/(C_(1)) + (C_(3))/(C_(2)) +…+ n (C_(n))/(C_(n-1)) = (1)/(k) n(n+1) , then the value of k, is

(i) if A=[{:(1,0),(0,1):}],B=[{:(0,1),(1,0):}]and C=[{:(1,0),(0,1):}], then show that A^(2)=B^(2)=C^(2)=I_(2). (ii) if A=[{:(1,0),(1,1):}],B=[{:(2,0),(1,1):}]and C=[{:(-1,2),(3,1):}], then show that A(B+C)=AB+AC. (iii) if A=[{:(1,-1),(-1,1):}]and B=[{:(1,1),(1,1):}], then show that AB is a zero matrix.

(i) if A=[{:(1,0),(0,1):}],B=[{:(0,1),(1,0):}]and C=[{:(1,0),(0,1):}], then show that A^(2)=B^(2)=C^(2)=I_(2). (ii) if A=[{:(1,0),(1,1):}],B=[{:(2,0),(1,1):}]and C=[{:(-1,2),(3,1):}], then show that A(B+C)=AB+AC. (iii) if A=[{:(1,-1),(-1,1):}]and B=[{:(1,1),(1,1):}], then show that AB is a zero matrix.