Home
Class 12
MATHS
Given three non-zero, non-coplanar ve...

Given three non-zero, non-coplanar vectors ` vec a , vec b ,a n d vec cdot vec r_1=p vec a+q vec b+ vec ca n d vec r_2= vec a+p vec b+q vec cdot` If the vectors ` vec r_1()_+2 vec r_2a n d2 vec r_1+ vec r_2` are collinear, then `(P ,q)` is a. `(0,0)` b. `(1,-1)` c. `(-1,1)` d. `(1,1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Given three non-zero, non-coplanar vectors vec a , vec b ,and vec c . vec r_1=p vec a+q vec b+ vec ca n d vec r_2= vec a+p vec b+q vec c dot If the vectors vec r_1+2 vec r_2 and 2 vec r_1+ vec r_2 are collinear, then (P ,q) is a. (0,0) b. (1,-1) c. (-1,1) d. (1,1)

Given three non-zero, non-coplanar vectors vec a , vec b ,and vecc .vec r_1=p vec a+q vec b+ vec ca n d vec r_2= vec a+p vec b+q vecc dot If the vectors vec r_1+2 vec r_2 and 2 vec r_1+ vec r_2 are collinear, then (P ,q) is

Given three non-zero, non-coplanar vectors vec a , vec b ,and vecc .vec r_1=p vec a+q vec b+ vec ca n d vec r_2= vec a+p vec b+q vecc dot If the vectors vec r_1+2 vec r_2 and 2 vec r_1+ vec r_2 are collinear, then (p ,q) is

For three vectors vec p,vec q and vec r if vec r=3vec p+4vec q and 2vec r=vec p-3vec q then

If vec p + vec q + vec r = xvec s and vec q + vec r + vec s = yvec p and are vec p, vec q, vec r non coplaner vectors then | vec p + vec q + vec r + vec r + vec s | =

If vec r* vec a =0 = vec r* vec b ,where vec a and vec b are non-coplanar vectors then

Vectors vec a and vec b are non-collinear. Find for what value of n vectors vec c=(n-2) vec a+ vec b and vec d=(2n+1) vec a- vec b are collinear?

Vectors vec a and vec b are non-collinear. Find for what value of n vectors vec c=(n-2) vec a+ vec b and vec d=(2n+1) vec a- vec b are collinear?

Vectors vec a and vec b are non-collinear. Find for what value of n vectors vec c=(n-2) vec a+ vec b and vec d=(2n+1) vec a- vec b are collinear?

If vec r. vec a=0, vec r. vec b=1 \ and \ [[ vec r ,vec a, vec b]]=1, vec adot vec b!=0,( vec adot vec b)^2-| vec a|^2| vec b|^2=-1, then find vec r in terms of vec a \ and \ vec b .