Home
Class 11
MATHS
If x+y+z=1, then the minimum value of x...

If `x+y+z=1`, then the minimum value of
`xy(x+y)^(2)+yz(y+z)^(2)+zx(z+x)^(2)` is , where x,y,z` inR^(+)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x + y + z = 0 , then the value of (x^2)/(yz) + (y^2)/(zx) + (z^2)/(xy) is:

If x=997 , y=998 z=999 then the value of x^(2)+y^(2)+z^(2)-xy-yz-zx will be

If x^(3)+y^(3)+z^(3)=3xyz and x+y+z=0 , then the value of ((x+y)^(2))/(xy)+((y+z)^(2))/(yz)+((z+x)^(2))/(zx) is

If x^2+y^2+z^2= xy+yz+zx then find the value of (x+y):z.

Simplify- (x-y)/(xy)+(y-z)/(yz)+(z-x)/(zx)