Home
Class 12
MATHS
Prove that : sin cot^(-1) tan cos^(-1) x...

Prove that : `sin cot^(-1) tan cos^(-1) x=x`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin cot^(-1) tan cos^(-1) x = sin cosec^(-1) cot tan^(-1) x = x, " where " x in [0,1]

Prove that sin cot^(-1) tan cos^(-1) x = sin cosec^(-1) cot tan^(-1) x = x, " where " x in [0,1]

Prove that sin cot^(-1) tan cos^(-1) x = sin cosec^(-1) cot tan^(-1) x = x, " where " x in [0,1]

Show that sin (cot^(-1) (tan cos^(-1)x)) =x

Prove that sin cosec^(-1)cot(tan^(-1)x) =x

sin cot^(-1) tan cos^(-1) x is equal to :

Prove that: sin[cot^(-1){cos(tan^(-1)x)}]=sqrt((x^(2)+1)/(x^(2)+2))cos[tan^(^^)(-1){sin(cot^(-1)x)}]=sqrt((x^(2)+1)/(x^(2)+2))

Show that sin[cot^-1{tan(cos^-1 x)}]=x

Prove that: "sin"[cot^(-1){"cos"(tan^(-1)x)}]=sqrt((x^2+1)/(x^2+2))