Home
Class 12
MATHS
If four vectors bar a,bar b,bar c,bar d ...

If four vectors `bar a,bar b,bar c,bar d` are coplanar, then `(bar a xx bar b)xx(bar c xx bar d)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If bar(a),bar(b),bar( c ) and bar(d) are coplanar vectors then (bar(a)xx bar(b))xx(bar( c )xx bar(d)) = …………..

bar a, bar b, bar c are three vectros, then prove that: (bar a xx bar b) xx bar c = (bar a. bar c) bar b-(bar b. bar c) bar a.

If bar(a),bar( c ) and bar(d) are not coplanar vectors and bar(d).(bar(a)xx(bar(b)xx(bar( c )xx bar(d))))=K[bar(a),bar( c ),bar(d)] then K = ….

Given four non zero vectors bar a,bar b,bar c and bar d . The vectors bar a,bar b and bar c are coplanar but not collinear pair by pairand vector bar d is not coplanar with vectors bar a,bar b and bar c and hat (bar a bar b) = hat (bar b bar c) = pi/3,(bar d bar b)=beta ,If (bar d bar c)=cos^-1(mcos beta+ncos alpha) then m-n is :

Given four non zero vectors bar a,bar b,bar c and bar d. The vectors bar a,bar b and bar c are coplanar but not collinear pair by pairand vector bar d is not coplanar with vectors bar a,bar b and bar c and hat (bar a bar b) = hat (bar b bar c) = pi/3,(bar d bar b)=beta ,If (bar d bar c)=cos^-1(mcos beta+ncos alpha) then m-n is :

Given four non zero vectors bar a,bar b,bar c and bar d . The vectors bar a,bar b and bar c are coplanar but not collinear pair by pairand vector bar d is not coplanar with vectors bar a,bar b and bar c and hat (bar a bar b) = hat (bar b bar c) = pi/3,(bar d bar b)=beta ,If (bar d bar c)=cos^-1(mcos beta+ncos alpha) then m-n is :

If bar a = 2 bar I + bar j - bar k, bar b = - bari + 2 bar j - 4 bar k and bar c = bar I + bar j + bar k , then find ( bar a xx bar b) cdot (bar b xx bar c) .

If bar(a) is a unit vector then bar(a)xx{bar(a)xx(bar(a)xxbar(b))=

The vectors bar(a) and bar(b) are perpendicular then bar(a)xx{bar(a)xx{bar(a)xx(bar(a)xx bar(b))}} = ………….