Home
Class 12
MATHS
If y={log(cosx)sinx}"{"log(sinx)cosx")"^...

If `y={log_(cosx)sinx}"{"log_(sinx)cosx")"^(-1)+s in^(-1)((2x)/(1+x^2)),` find `(dy)/(dx)a tx=pi/4dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y={log_(cosx)sinx}"{"log_(sinx)cosx")"^(-1)+sin^(-1)((2x)/(1+x^2)), find (dy)/(dx)a tx=pi/4dot

If y={(log)_(cosx)sinx}{(log)_(sinx)cosx}^(-1)+sin^(-1)((2x)/(1+x^2)), find (dy)/(dx)a tx=pi/4

If y={(log)_(cosx)sinx}{(log)_(sinx)cosx}^(-1)+sin^(-1)((2x)/(1+x^2)), fin d (dy)/(dx)a tx=pi/4

If y={(log)_(cosx)sinx}{(log)_(sinx)cosx}^(-1)+sin^(-1)((2x)/(1+x^2)), fin d (dy)/(dx)a tx=pi/4

If y={(log)_(cosx)sinx}{(log)_(sinx)cosx}^(-1)+sin^(-1)((2x)/(1+x^2)), fin d (dy)/(dx)a tx=pi/4

If y={(log)_(cosx)sinx}{(log)_(sinx)cosx}^(-1)+sin^(-1)((2x)/(1+x^2)), fin d (dy)/(dx)a tx=pi/4

If y = (log_(cosx) sin x)(log_(sinx) cosx)^-1 + sin^-1((2x)/(1+x^2)) , find dy/dx at x = pi/4

If y=(log_(cosx)sinx)(log_(sinx)cosx)+"sin"""^(-1)(2x)/(1+x^(2)) , then (dy)/(dx) at x=(pi)/(2) is equal to

If y=(log_(cosx)sinx)(log_(sinx)cosx)+"sin"""^(-1)(2x)/(1+x^(2)) , then (dy)/(dx) at x=(pi)/(2) is equal to

Find the derivative with respect to x of ((log)_(cosx)sinx)((log)_(sinx)cosx)^(-1)+sin^(-1)((2x)/(1+x^2)) at x=pi/4 .