Home
Class 12
MATHS
bar a=2 bar i+bar j-2bar k and bar b=ba...

`bar a=2 bar i+bar j-2bar k and bar b=bar i+bar j` if `bar c` is a vector such that `bar a* bar c=|bar c|,|bar c-bar a|=2sqrt2` and and the angle between`bar axxbar b and bar c` is `30^@`, then `|(bar a xx bar b)xxbar c|=`

Promotional Banner

Similar Questions

Explore conceptually related problems

bar(a)=2hati+hatj-2hatk and bar(b)=hati+hatj . The vector bar( c ) is such that bar(a)*bar( c )=|bar( c )|,|bar( c )-bar(a)|=2sqrt(2) and the angle between bar(a)xx bar(b) and bar( c ) is 30^(@) then |(bar(a)xx bar(b))xx bar( c )| = …………

If bar(a) is a perpendicular to bar(b) and bar(c), |bar(a)|=2, |bar(b)|=3, |bar(c)|=4 and the angle between bar(b) and bar(c) is (2pi)/(3) then |[bar(a) bar(b) bar(c)]| =

If bar(a)=bar(i)+bar(j)+bar(k) and bar(b)=bar(j)-bar(k) , then find a vector vec( c ) such that bar(a)xx bar( c )=bar(b) and bar(a).bar( c )=3 .

if bar a+2 bar b+3bar c=bar 0 then bar axxbar b+bar b xx bar c+bar cxx bara = lambda (bar b xx bar c) ,where lambda=

If bar a = 2 bar I + bar j - bar k, bar b = - bari + 2 bar j - 4 bar k and bar c = bar I + bar j + bar k , then find ( bar a xx bar b) cdot (bar b xx bar c) .

Let bar a = 2 bari + 4 bar j - 5 bark, bar b= bar i + bar j + bar k and bar c = bar j + 2 bar k . Find the unit vector in the opposite direction of bar a + bar b + bar c .

If bar(a)=2bar(i)-bar(j)+bar(k), bar(b)=bar(i)-3bar(j)-5bar(k) , find the vector bar(c) such that bar(a), bar(b) and bar(c) form the sides of a triangle.

bar (a) = 2bar (i) + 3bar (j) -bar (k), bar (b) = bar (i) + 2bar (j) -4bar (k), bar (c) = bar (i) + bar (j) + bar (k), bar (d) = bar (i) -bar (j) -bar (k) then

bar (a) = bar (a) + bar (j) + bar (k), bar (b) = bar (i) + bar (j), bar (c) = bar (i) and (bar (a) xxbar (b)) xxbar (c) = lambdabar (a) + mubar (b), then lambda + mu =

If bar(a)=bar(i)-2bar(j)-bar(k) , bar(b)=-2bar(j)+bar(k) are two vectors and bar(c) is a vector such that bar(c)=bar(a) times bar(b) then |bar(a)|:|bar(b)|:|bar(c)| =