Home
Class 12
MATHS
ILLUSTRATION 3.39 In 4ABC, sin C + cos C...

ILLUSTRATION 3.39 In 4ABC, sin C + cos C+ sin(2B + C) - cos (2B + C) = 212. Prove that ABC is right-angled isosceles.

Promotional Banner

Similar Questions

Explore conceptually related problems

If ABC,sin C+cos C+sin(2B+C)-cos(2B+C)=2sqrt(2) Prove that ABC is right-angled isosceles.

In a o+ABC, if cos C=(sin A)/(2sin B), prove that the triangle is isosceles.

If in a Delta ABC, c(a+b) cos B//2 = b(a+c) cos C//2 , prove that the triangle is isosceles.

In any triangle ABC, if (cos A + 2 cos C)/(cos A + 2 cos B) = (sin B)/(sin C) then prove that, the triangle is either isosceles or right angled.

In any triangle ABC, if (cos A + 2 cos C)/(cos A + 2 cos B) = (sin B)/(sin C) then prove that, the triangle is either isosceles or right angled.

In any triangle ABC, if (cos A + 2 cos C)/(cos A + 2 cos B) = (sin B)/(sin C) then prove that, the triangle is either isosceles or right angled.

In triangle ABC if 2sin^(2)C=2+cos2A+cos2B , then prove that triangle is right angled.

In triangle ABC if 2sin^(2)C=2+cos2A+cos2B , then prove that triangle is right angled.

In triangle ABC if 2sin^(2)C=2+cos2A+cos2B , then prove that triangle is right angled.