Home
Class 12
MATHS
If 2vec(a)+3vec(b)+vec(c)=vec(0), then v...

If `2vec(a)+3vec(b)+vec(c)=vec(0)`, then `vec(a)xxvec(b)+vec(b)xxvec(c)+vec(c)xxvec(a)=3vec(b)xxvec(c)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(a)+vec(b)+vec(c)=0," then show that "vec(a)xxvec(b)=vec(b)xxvec(c)=vec(c)xxvec(a)

If [vec(a),vec(b),vec(c)]=1, then the value of (vec(a)*(vec(b)xxvec(c)))/((vec(c)xxvec(a))*vec(a))+(vec(b)*(vec(c)xxvec(a)))/((vec(a)xxvec(b))*vec(c))+(vec(c)(vec(a)xxvec(b)))/((vec(c)xxvec(b))*vec(a)) is

If vec(a),vec(b),vec(c) are the non-coplanar vectors, then (vec(a).vec(b)xxvec(c))/(vec(c)xxvec(a).vec(b))+(vec(b).vec(a)xxvec(c))/(vec(c).vec(a)xxvec(b))= ……………

If vec(a),vec(b),vec(c) are non-coplanar, non-zero vectors such that [vec(a),vec(b),vec(c)]=3,"then"{"["vec(a)xxvec(b),vec(b)xxvec(c),vec(c)xxvec(a)"]"}^(2) is equal to

Given vec(A)xxvec(B)=vec(0) and vec(B)xxvec(C )=vec(0) Prove that vec(A)xxvec(C )=vec(0)