Home
Class 11
MATHS
The length of the chord of the parabola ...

The length of the chord of the parabola `y^2=x` which is bisected at the point (2, 1) is (a)`2sqrt(3)` (b) `4sqrt(3)` (c) `3sqrt(2)` (d) `2sqrt(5)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The length of the chord of the parabola y^2=x which is bisected at the point (2, 1) is 2sqrt(3) (b) 4sqrt(3) (c) 3sqrt(2) (d) 2sqrt(5)

Radius of the circle that passes through the origin and touches the parabola y^2=4a x at the point (a ,2a) is (a) 5/(sqrt(2))a (b) 2sqrt(2)a (c) sqrt(5/2)a (d) 3/(sqrt(2))a

Radius of the circle that passes through the origin and touches the parabola y^2=4a x at the point (a ,2a) is (a) 5/(sqrt(2))a (b) 2sqrt(2)a (c) sqrt(5/2)a (d) 3/(sqrt(2))a

Radius of the circle that passes through the origin and touches the parabola y^(2)=4ax at the point (a,2a) is (a) (5)/(sqrt(2))a (b) 2sqrt(2)a (c) sqrt((5)/(2))a (d) (3)/(sqrt(2))a

the length of intercept made by the line sqrt2x-y-4sqrt2=0 on the parabola y^2=4x is equal to (a) 6sqrt3 (b) 4sqrt3 (c) 8sqrt2 (d) 6sqrt2

the length of intercept made by the line sqrt2x-y-4sqrt2=0 on the parabola y^2=4x is equal to (a) 6sqrt3 (b) 4sqrt3 (c) 8sqrt2 (d) 6sqrt2

The radius of the circle passing through the points (1, 2), (5, 2) and (5, -2) is : (A) 5sqrt(2) (B) 2sqrt(5) (C) 3sqrt(2) (D) 2sqrt(2)

The radius of the circle passing through the points (1, 2), (5, 2) and (5, -2) is : (A) 5sqrt(2) (B) 2sqrt(5) (C) 3sqrt(2) (D) 2sqrt(2)

The length of the chord y=sqrt3x-2sqrt3 intercepted by the parabola y^(2)=4(x-1) is equal to

The length of the chord y=sqrt3x-2sqrt3 intercepted by the parabola y^(2)=4(x-1) is equal to