Home
Class 20
MATHS
[" Let "f'(x)=(192x^(3))/(2+sin^(4)pi x)...

[" Let "f'(x)=(192x^(3))/(2+sin^(4)pi x)" for all "x in R" with "f((1)/(2))=0." If "m<=int_(1/2)^(1)f(x)dx<=M," then the possible "],[" values of "m" and Mare "],[[" (A) "m=13,M=24," (B) "m=(1)/(4),M=(1)/(2)," (C) "m=-11,M=0," (D) "m=1,M=12]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x in R with f((1)/(2))=0 . If m le int_((1)/(2))^(1)f(x)dx leM , then the possible values of m and M are-

Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0 . If mle int_(1//2)^(1)f(x)dxleM , then the possible values of m and M are

Let f'(x)=(192x^3)/(2+sin^4pix) for all x in R with f(1/2)=0.If mleint_(1//2)^1f(x)dxleM , then the possible values of m and M are

Let f prime(x)=(192x^3)/(2+sin^4 pix) for all x in RR with f(1/2)=0. If mlt=int_(1/2)^1f(x)dxlt=M then for x in [(1/2),1] the possible values of m and M are

Let f prime(x)=(192x^3)/(2+sin^4 pix) for all x in RR with f(1/2)=0. If mlt=int_(1/2)^1f(x)dxlt=M then the possible values of m and M are (i) m=13,M= 24 (ii) m=1/4,M=1/2 (iii) m=-11,M = 0 (iv) m=1,M=12

Let f prime(x)=(192x^3)/(2+sin^4 pix) for all x in RR with f(1/2)=0. If mlt=int_(1/2)^1f(x)dxlt=M then the possible values of m and M are (i) m=13,M= 24 (ii) m=1/4,M=1/2 (iii) m=-11,M = 0 (iv) m=1,M=12

Let f(x)=sin[(pi)/(6)sin((pi)/(2)sin x)] for all x in R

Let f(sin x)+2f(cos x)=3 for all x in R Fird f(x)

Let g(x) =f(x)-2{f(x)}^2+9{f(x)}^3 for all x in R Then