Home
Class 11
MATHS
" (a) Firs affere "f=sin^(2)((pi)/(8)+(4...

" (a) Firs affere "f=sin^(2)((pi)/(8)+(4)/(2))-sin^(2)((pi)/(8)-(4)/(2))=(5)/(sqrt(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin^(2)((pi)/(8)+(A)/(2))-sin^(2)((pi)/(8)-(A)/(2))=(1)/(sqrt(2))sin A

Prove that, sin^(2)((pi)/(8)+(A)/(2))-sin^(2)((pi)/(8)-(A)/(2))=(1)/(sqrt(2))sinA

sin^(2)((A)/(2)+(pi)/(8))-sin^(2)((A)/(2)-(pi)/(8))=(1)/(sqrt(2))sin A

Prove that sin ^(2) ((pi)/(8)+(A)/(2)) - sin ^(2) ((pi)/(8) - (A)/(2))=(1)/(sqrt2) sin A .

int[sin^(2)((9 pi)/(8)+(x)/(4))-sin^(2)((7 pi)/(8)+(x)/(4))]dx

If f(x)=sin^(2)((pi)/(8)+(x)/(2))-sin^(2)((pi)/(8)-(x)/(2)) then period of f(x) is

sin ^ (2) ((pi) / (8) + (A) / (2)) - sin ^ (2) ((pi) / (8) - (A) / (2)) = (1) / (sqrt (2)) sin A

4.Prove that sin^(2)((pi)/(8))+sin^(2)((3 pi)/(8))=1

If f(x)=sin^(2)((pi)/(8)+(x)/(2))-sin^(2)((pi)/(8)-(x)/(2)) then the period of f is