Home
Class 12
MATHS
If f(x) = sum(i=1)^n (x-ai)^2 has a min...

If `f(x) = sum_(i=1)^n (x-a_i)^2` has a minimum at `x = x_0`, then for `a_1..................,a_n; x_0` is the

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)= overset(n) underset(i=1) sum (x-a_(i))^(2) has a minimum at x=x_(0) then for a_(1),.....a_(n),x_(0) is the

If f(x)=sum_(n=0)a_(n)|x|^(n), where a_(i) are real constants,then f(x) is

If f(x)=sum_(n=0)a_(n)|x|^(n), where a_(i) are real constants,then f(x) is

If barx=1/n sum_(i=1)^n x_i then prove that sum_(i=1)^n (x_i-barx)=0

If f(x)= prod_(i=1)^3 (x-a_i) +sum_(i=1)^3a_i-3x where a_i lt a_(i+1) forall i=1,2,. . . then f(x)=0 has

If f(x) =Pi_(i=1)^3(x-a_i) + sum_(i=1)_3 a_i - 3x where a_i < a_(i+1) for i = 1,2, then f(x) = 0 have

If f(x) =Pi_(i=1)^3(x-a_i) + sum_(i=1)_3 a_i - 3x where a_i < a_(i+1) for i = 1,2, then f(x) = 0 have

If sum_(i=1)^n (x_i -a) =n and sum_(i=1)^n (x_i - a)^2 =na then the standard deviation of variate x_i

if f(x) = (x - a_1) (x - a_2) .....(x - a_n) then find the value of lim_(x to a_1) f(x)

Let f(x)=x^2 + 3x-3,x leq 0 . If n points x_1, x_2, x_3,.....,x_n are so chosen on the x-axis such that (1) 1/n sumf^-1(x_i)=f(1/n sum_( i=1 )^nx_i) (2) sum_(i=1) ^ n f^-1(x_i)=sum_(i=1) ^ n x_i where f^-1 denotes the inverse of f, Then the AM of xi's is a)1 b)2 c)3 d)4