Home
Class 10
MATHS
If sinalpha and cosalpha are the root...

If `sinalpha` and `cosalpha` are the roots of the equation `a x^2+b x+c=0` , then `b^2=` `a^2-2a c` (b) `a^2+2a c` (c) `a^2-a c` (d) `a^2+a c`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sinalpha and cosalpha are the roots of the equation a x^2+b x+c=0 , then b^2= (a) a^2-2a c (b) a^2+2a c (c) a^2-a c (d) a^2+a c

The roots of the equation ( a-b) x^2 +(b-c) x+ (c-a) =0 are

The roots of the equation (b-c) x^2 +(c-a)x+(a-b)=0 are

The roots of the equation (b-c) x^2 +(c-a)x+(a-b)=0 are

If a lt c lt b then the roots of the equation (a−b)x^2 +2(a+b−2c)x+1=0 are

The roots of the equation (b-c)x^(2)+(c-a)x+(a-b)=0

If the roots of the equation (a^2+b^2)x^2-2b(a+c)x+(b^2+c^2)=0 are equal, then 2b=a+c (b) b^2=a c (c) b=(2a c)/(a+c) (d) b=a c

If the roots of the equation (a^2+b^2)x^2-2b(a+c)x+(b^2+c^2)=0 are equal, then (a) 2b=a+c (b) b^2=a c (c) b=(2a c)/(a+c) (d) b=a c