Home
Class 12
MATHS
sum(r=0)^n nCr sin r x.cos(n-r)x ís eq...

`sum_(r=0)^n nC_r sin r x.cos(n-r)x` ís equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sum_(r=0)^(n) ""^(n)C_(r )sin rx. cos (n-r)x = 2^(n-1) xx sin nx .

Prove that sum_(r=0)^(n) ""^(n)C_(r )sin rx. cos (n-r)x = 2^(n-1) xx sin nx .

If s_n= sum_(r=0)^n 1/(^"nC_r) and t_n=sum_(r=0)^n r/("^nC_r) then t_n/s_n is equal to

If s_n=sum_(r=0)^n1/(""^nC_r)and t_n=sum_(r=0)^nr/(""^nC_r), then t_n/s_n is equal to :

The value of (sum_(r=0)^(n)nC_(r)sin2 pi x)/(sum_(r=0)^(n)nC_(r)cos2 pi x) is equal to

If x+y=1, prove that sum_(r=0)^n .^nC_r x^r y^(n-r) = 1 .

If x+y=1, prove that sum_(r=0)^n .^nC_r x^r y^(n-r) = 1 .

The value of sum_(r=0)^(n)r(n-r)(nC_(r))^(2) is equal to