Home
Class 12
MATHS
The value of lim(xrarrpi//4) (tan^(3)x-t...

The value of `lim_(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4)))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr pi/4)(tan^(3)x-tan x)/(cos(x+(pi)/(4))) is 8 b.4 c.-8d .-2

The value of lim_(xrarr(5pi)/(4))(cot^(3)x-tanx)/(cos(x+(5pi)/(4))) is equal to

The value of lim_(xrarr(5pi)/(4))(cot^(3)x-tanx)/(cos(x-(5pi)/(4))) is equal to

The value of lim_(x rarr(pi)/(3))(tan^(3)x-3tan x)/(cos(x+(pi)/(6)))is:

The value of lim_(x rarr(pi)/(3))((tan^(3)x-3*tan x)/(cos(x+(pi)/(6))))

If alpha = lim_(x rarr pi//4)""(tan^(3)x - tan x)/(cos (x + (pi)/(4))) and beta = lim_(x rarr 0)(cos x)^(cot x) are the roots of the equation, a x^(2) + bx -4 = 0 , then the ordered pair (a, b) is :

The value of lim_(x->pi/4)(tan^3x-t a n x)/(cos(x+pi/4)) is 8 b. -4 c. -8 d. -2

Evaluate: lim_(xto(pi)/(3))(tan^3x-3tanx)/(cos(x+(pi)/(6)))

lim_(xto pi/4) (cot^3x-tanx)/(cos(x+pi/4)) is

lim_(xto pi/4) (cot^3x-tanx)/(cos(x+pi/4)) is