Home
Class 12
MATHS
Find A^2-5A+6I , if A=[2 0 1 2 1 3 1-1 0...

Find `A^2-5A+6I` , if `A=[2 0 1 2 1 3 1-1 0]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find A^(2)-5A+6I, if A=[[2,0,12,1,31,-1,0]]

Find A^2-5 A+6 I , if A=[[2, 0, 1],[ 2 ,1 , 3],[ 1, -1, 0]]

Find A^2-5A+6 if A=[[2,0,1],[2,1,3],[1,-1,0]]

Find ,A^2-5A+6l, if A = [(2,0,1),(2,1,3),(1,-1,0)] .

If A=[{:(2,0,1),(2,1,3),(1,-1,0):}] . find A^(2)-5A+6I and hence , find a matrix X such that A^(2)-5A+6I+X=O .

Show that i) [[5 , (-1)],[ 6, 7]][[2, 1],[ 3 ,4]] ne[[2 , 1 ],[3 , 4]][[5, (-1)],[ 6 ,7]] ii) [[1, 2 , 3],[ 0 , 1, 0],[ 1 , 1, 0]][[(-1), 1, 0],[ 0, (-1), 1],[ 2, 3, 4]] ne[[(-1), 1, 0],[ 0, (-1), 1],[ 2, 3, 4]] [[1 , 2, 3],[ 0, 1, 0],[ 1, 1, 0]] .

If A^(-1)=[3-1 1-15 6-5 5-2 2] and B=[1 2-2-1 3 0 0-2 1] , find (A B)^(-1) .

If A^(-1)=[3-1 1-15 6-5 5-2 2] and B=[1 2-2-1 3 0 0-2 1] , find (A B)^(-1) .

If A = ((3,1),(-1,2)), I = ((1,0),(0,1)) and O = ((0,0),(0,0)) show that, A^(2) - 5A + 7I = O . Hence find A^(-1) .

For the matrix A = [[1,1,1],[1,2,-3],[2,-1,3]] , show that A^3 - 6A^2 + 5A + 11I = 0 . Hence find A^-1 .