Home
Class 9
MATHS
(1003)^(1/3)-(997)^(1/3)=...

`(1003)^(1/3)-(997)^(1/3)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

1/3gt0,3/4gt0impliestan^(-1)(1/3)-tan^(-1)(3/4) =tan^(-1)((1/3-3/4)/(1+1/3 . 3/4))=tan^(-1)((-5)/15)=tan^(-1)(1/3) =-tan^(-1)(1/3)

(4)/(9^(1/3)-3^(1/3)+1) is equal to 3^(1/3)+1b3^(1/3)-1c*3^(1/3)+2d*3^(1/3)-2

If (3(x^((1)/(3))-(1)/(x^((1)/(3)))))^((1)/(3))=2, then x^((1)/(3))+(1)/(x^((1)/(3)))=

((1)/(3)+3i)^(3)=((1)/(3))^(3)+(3i)^(3)+3(1)/(3))(( 1)/(3)+3i)

Find the value of log_(1003)(1+1/2)+log_(1003)(1+1/3)+"…"+log_(1003)(1+1/(2005))

The unit's digit of 3^(1001)xx7^(1002)xx13^(1003)

What is i^(100)+i^(1001)+i^(1002)+i^(1003) equal to (where i=sqrt(-1)) ?