Home
Class 12
MATHS
If f(x)=(cos3x-cos4x)/(x sin2x), x!=0, f...

If `f(x)=(cos3x-cos4x)/(x sin2x), x!=0, f(0)=7/4` then `f(x)` at `x=0` is

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=(cos3x-cos4x)/(x sin2x),x!=0,f(0)=(7)/(4) then f(x) at x=0is,x!=0,f(0)=(7)/(4)

If f(x) = (cos 3x - cos 4x)/( x sin2x), x in 0, f (0) = (7)/(4) then f(x) at x = 0 is

Show that f(x) = (cos3x - cos4x)/(xsin 2x), x ne 0 , f(0) = (7)/(4) is continuous at x = 0 .

f(x)=(sin x-x cos x)/(x^(2)) if x!=0 and f(0)=0 then int_(0)^(1)f(x)dx is

A function f(x) is defined as below f(x)=(cos(sin x)-cos x)/(x^(2)),x!=0 and f(0)=a f(x) is continuous at x=0 if 'a' equals

Define f(0) such that the function f(x)=(cos(sin x)-cos x)/(x^(2)),x!=0, is continuous at x=0

if int e^(sin x)(x cos^(3)x-sin x)/(cos^(2)x)dx and f(0)=1 then f(pi)= is

f(x) = (1 - cos (4x))/(x^(2)) , x in 0, f (0) = 8 , at x =0 f is

f:R rarr R is defined by f(x)={(cos3x-cos x)/(x^(2)),x!=0 lambda,x=0 and f is continuous at x=0; then lambda=