Home
Class 12
MATHS
[[2,-1,0],[2,-1,3],[-3,2,3]]" - "...

[[2,-1,0],[2,-1,3],[-3,2,3]]" - "

Promotional Banner

Similar Questions

Explore conceptually related problems

If A= [[1,2,0],[0,1,3],[-2,5,3]],"then verify that" A=[[1,2,0],[0,1,3],[-2,5,3]] impliesA'=[[1,0,-2],[2,1,5],[0,3,3]] A+A' is skmmetric

If A= [[1,2,0],[0,1,3],[-2,5,3]],"then verify that" A=[[1,2,0],[0,1,3],[-2,5,3]] impliesA'=[[1,0,-2],[2,1,5],[0,3,3]] A+A' is symmetric

Find A if [[1,0,-1],[-2,-1,4],[-1,0,2]]A = [[-1,-2,2],[3,4,-3],[3,4,-1]]

If A = [[2,0,1],[2,-1,3],[1,1,0]] then find A^2-3A+2I .

Find A such that [[2,3,4],[1,0,-2],[3,1,-1]]+A=[[1,2,-1],[2,-1,0],[1,3,2]]

If A=[[1,2,3],[2,0,-2]],B=[[1,1,-1],[2,0,3],[3,-1,2]] and C=[[1,3],[0,2],[-1,4]] find A(BC).

If A= [[0,-2,3],[2,0,-1],[-3,1,0]] then A^5 is

If A=[[1,0,-2],[2,3,-1]], B=[[4,-1,3],[0,2,1]]"and" C=[[2,-3,0],[1,4,5]] "find " A-3B+3C

Rank of the matrix [[3,0,2], [-1,1,0],[5,2,3]] is (1) 1 (2) 2 (3) 3 (4) 4

If A=[[1, -1, 2], [0, 2, -3], [3, -2, 4]] , then |A^(-1)|=