Home
Class 12
MATHS
Sixteen players S(1), S(2), S(3),…,S(16)...

Sixteen players `S_(1)`, `S_(2)`, `S_(3)`,…,`S_(16)` play in a tournament. Number of ways in which they can be grouped into eight pairs so that `S_(1)` and `S_(2)` are in different groups, is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Fifteen sudents S_(1),S_(2),S_(3),….S_(15) participate in quiz competition. The number of ways in which they can be grouped into 5 teams of 3 each such that S_(1) and S_(2) are in different teams is equal to

Sixteen players P_(1),P_(2),P_(3)….., P_(16) play in tournament. If they grouped into eight pair then the probability that P_(4) and P_(9) are in different groups, is equal to

Sixteen players P_(1),P_(2),P_(3)….., P_(16) play in tournament. If they grouped into eight pair then the probability that P_(4) and P_(9) are in different groups, is equal to

Sixteen players S_(1),S_(2),…,S_(16) play in a tournament. They are divided into eight pairs at random. From each pair a winner is decided on the basis of a game played between the two players decided to the basis of a game played between the two players of the pair. Assume that all the players are of equal strength. (a) Find the prabability that the player S_(1) is among the eight winners. (b) Find the probability that exactly one of the two players S_(1)and S_(2) is among the eight winners.

Sixteen players S_(1),S_(2),...,S_(16) play in a tournament.They are divided into eight pairs at random.From each pair a winner is decided on the basis of a game played between the two players of the pair.Assume that all the players are of equal strength.Find the probability that the player S_(1) is among the eight winners.

Sixteen players S_1,S_2, ..., S_(16) play in a tournament. They are divided into eight pairs at random. From each pair a winner is decided on the basis of a game played between the two players of the pair. Assume that all the players are of equal strength.Find the probability that the player S_1 is among the eight winners.

S_(1) and S_(2) are two equipotential surfaces on which the potentials are not equal

S_(1) and S_(2) are two equipotential surfaces on which the potentials are not equal