Home
Class 12
MATHS
Suppose for every integer n, . int(n)^(n...

Suppose for every integer `n, . int_(n)^(n+1)f(x)dx = n^(2)`. The value of `int_(-2)^(4) f(x)dx` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

If for every ineger n , int_(n)^(n+1) f(x) dx=n^(2) then the value of int_(-2)^(4) f(x)dx=

For every integer n, int_(n)^(n+1)f(x)dx=n^(2) , then the value of int_(0)^(5)f(x)dx=

For every integer n, int_(n)^(n+1)f(x)dx=n^(2) , then the value of int_(0)^(5)f(x)dx=

suppose for every integer n, int_n^(n+1)f(x)dx=n^2 then the value of int_(-2)^4 f(x)dx is

The value of int[f(x)]^(n)f'(x)dx=

Suppose for every integer n, . underset(n)overset(n+1)intf(x)dx = n^(2) . The value of underset(-2)overset(4)intf(x)dx is :

If int_(n)^(n+1)f(x)dx = n^(2) , where n is an integer, then int_(-2)^(4)f(x)dx=

int_(n)^(n+1)f(x)dx=n^(2)+n then int_(-1)^(1)f(x)dx=

If int_(n)^(n+1) f(x) dx = n^(2) +n, AA n in I then the value of int_(-3)^(3) f(x) dx is equal to