Home
Class 12
MATHS
If dy/dx+2ytanx=sinx and y=0, when x=pi/...

If `dy/dx+2ytanx=sinx` and `y=0`, when `x=pi/3`, show that the maximum value of `y` is `1/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If dy/dx+2ytanx=sinx and y=0 , when x=pi/3 , show that the maximum value of y is 1/8

dy/dx+2ytanx=sinx at y=0, when x=pi/3

dy/dx + 2y tan x = sinx, give y = 0 when x= pi/3

Solve dy/dx+2ytanx=sinx , y=0 , x=pi/3

(dy)/(dx) + 2 y tan x = sin x, y = 0 when x = (pi)/(3) .

If dy/dx=e^(-2y) and y=0 when x=5, then the value of x for y=3 is

If (dy)/(dx)=e^(-2y) and y=0 when x=5, then the value of x for y=3 is

dy/dx+2ytanx = Sinx , y(pi/3)=0 , maximum value of y(x) is