Home
Class 11
MATHS
tan^(-1)(1)/(1+2x)+tan^(-1)(1)/(1+4x)=ta...

tan^(-1)(1)/(1+2x)+tan^(-1)(1)/(1+4x)=tan^(-1)(2)/(x^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of positive solution satisfying the equation tan^(-1)((1)/(2x+1))+tan^(-1)((1)/(4x+1))=tan^(-1)(2/(x^2)) is

The number of positive solution satisfying the equation tan^(-1)((1)/(2x+1))+tan^(-1)((1)/(4x+1))=tan^(-1)(2/(x^2)) is

Arithmetic mean of the non-zero solutions of the equation tan^(-1)((1)/(2x+1))+tan^(-1)((1)/(4x+1))=tan^(-1)((2)/(x^(2)))

If "Tan"^(-1)1/(1+2x)+"Tan"^(-1)1/(4x+1)" = Tan"^(-1)2/(x^(2)) then x(x!=0)=

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Solve: "tan"^(-1) 1/(2x+1) +"tan"^(-1) 1/(4x+1) = "tan"^(-1) 2/x^2

The root of the equation tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36)) is

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))