Home
Class 12
MATHS
lim(Xrarr2^(+)) {x}(sin(x-2))/((x-2)^(2)...

`lim_(Xrarr2^(+)) {x}(sin(x-2))/((x-2)^(2))=` (where `{.}` denotes the fractional part function)

Promotional Banner

Similar Questions

Explore conceptually related problems

underset(xrarr2^(+))(lim){x}(sin(x-2))/((x-2)^(2)) = (where {.} denotes the fractional part function)

lim x→(2^+) { x } sin( x−2 ) /( x−2)^2 = (where [.] denotes the fractional part function) a. 0 b. 2 c. 1 d. does not exist

lim x→(2^+) { x } sin( x−2 ) /( x−2)^2 = (where [.] denotes the fractional part function) a. 0 b. 2 c. 1 d. does not exist

lim x→(2^+) { x } sin( x−2 ) /( x−2)^2 = (where [.] denotes the fractional part function) a. 0 b. 2 c. 1 d. does not exist

Solve {x+1}-x^(2)+2x>0( where {.} denotes fractional part function)

lim_(x rarr1)({x})^((1)/(n pi x)) ,where {.} denotes the fractional part function

lim_(xrarr2)(x^3-8)/(sin(x-2))

if f(x) ={x^(2)} , where {x} denotes the fractional part of x , then

The value of lim_(xto0)((tan({x}-1))sin{x})/({x}({x}-1) is where {x} denotes the fractional part function